# Fungrim entry: 00b82b

Symbol: Range $\{a, a + 1, \ldots, b\}$ Integers between given endpoints
Range(a, b) $\{a, a + 1, \ldots, b\}$ Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$, represents $\left\{ n : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, a \le n \le b \right\}$.
Range(a, b) $\{a, a + 1, \ldots, b\}$ Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$, is equivalent to Set(n, For(n, a, b)).
Range(3, 3) $\{3, 4, \ldots, 3\}$ Represents the singleton set {3}. Note: potentially confusing rendering.
Range(3, 2) $\{3, 4, \ldots, 2\}$ Represents the empty set. Note: potentially confusing rendering.
Definitions:
Fungrim symbol Notation Short description
Range$\{a, a + 1, \ldots, b\}$ Integers between given endpoints
ZZ$\mathbb{Z}$ Integers
Source code for this entry:
Entry(ID("00b82b"),
SymbolDefinition(Range, Range(a, b), "Integers between given endpoints"),
CodeExample(Range(a, b), "Given", Element(a, ZZ), "and", Element(b, ZZ), ", represents", Set(n, ForElement(n, ZZ), LessEqual(a, n, b)), "."),
CodeExample(Range(a, b), "Given", Element(a, ZZ), "and", Element(b, ZZ), ", is equivalent to", SourceForm(Set(n, For(n, a, b))), "."),
CodeExample(Range(3, 3), "Represents the singleton set", Set(3), ".", " Note: potentially confusing rendering."),
CodeExample(Range(3, 2), "Represents the empty set.", " Note: potentially confusing rendering."))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC