Fungrim home page

Integer sequences

Table of contents: Definitions - Core sequences

Definitions

aac67f
Symbol: SloaneA A00000X ⁣(n)\text{A00000X}\!\left(n\right) Sequence X in Sloane's OEIS
963387
(XZ1  and  nZ)        A00000X ⁣(n)Z{Undefined}\left(X \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}\right) \;\implies\; \text{A00000X}\!\left(n\right) \in \mathbb{Z} \cup \left\{\operatorname{Undefined}\right\}

Core sequences

Main topic: Prime numbers
9d0839
pn=A000040 ⁣(n)p_{n} = \text{A000040}\!\left(n\right)
Main topic: Partition function
8eed2c
p(n)=A000041 ⁣(n)p(n) = \text{A000041}\!\left(n\right)
Main topic: Fibonacci numbers
373aa1
Fn=A000045 ⁣(n)F_{n} = \text{A000045}\!\left(n\right)
Main topic: Bell numbers
60dc3e
Bn=A000110 ⁣(n)B_{n} = \text{A000110}\!\left(n\right)
Main topic: Factorials and binomial coefficients
d12aa0
n!=A000142 ⁣(n)n ! = \text{A000142}\!\left(n\right)
Prime counting function - Main topic: Prime numbers
4fa169
π(n)=A000720 ⁣(n)\pi(n) = \text{A000720}\!\left(n\right)
Main topic: Landau's function
6af603
g(n)=A000793 ⁣(n)g(n) = \text{A000793}\!\left(n\right)
Main topic: Pi
483547
π=n=1A000796 ⁣(n)101n\pi = \sum_{n=1}^{\infty} \text{A000796}\!\left(n\right) {10}^{1 - n}
Main topic: Bernoulli numbers and polynomials
b6111c
Bn=A027641 ⁣(n)A027642 ⁣(n)B_{n} = \frac{\text{A027641}\!\left(n\right)}{\text{A027642}\!\left(n\right)}

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC