Symbol: SloaneA — A00000X(n)
— Sequence X in Sloane's OEIS
SloaneA(X, n), rendered as
A00000X(n)
gives the integer at position
n
in sequence number
X
in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS). The identifier
X
can be specified as an integer (e.g. 55) or a text (e.g. "A000055")
Semantically, this function represents the intended infinite extension of each (non-finite) OEIS sequence although the OEIS database itself of course only lists a finite number of terms.
Definitions:
Fungrim symbol | Notation | Short description |
---|
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
Source code for this entry:
Entry(ID("aac67f"),
SymbolDefinition(SloaneA, SloaneA(X, n), "Sequence X in Sloane's OEIS"),
Description(SourceForm(SloaneA(X, n)), ", rendered as", SloaneA(X, n), "gives the integer at position", n, "in sequence number", X, "in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS). ", "The identifier", X, "can be specified as an integer (e.g. 55) or a text (e.g. \"A000055\")"),
Description("Semantically, this function represents the intended infinite extension of each (non-finite) ", "OEIS sequence although the OEIS database itself of course only lists a finite number of terms."))
(X∈Z≥1andn∈Z)⟹A00000X(n)∈Z∪{Undefined}
TeX:
\left(X \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}\right) \;\implies\; \text{A00000X}\!\left(n\right) \in \mathbb{Z} \cup \left\{\operatorname{Undefined}\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
ZZ | Z
| Integers |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
Source code for this entry:
Entry(ID("963387"),
Formula(Implies(And(Element(X, ZZGreaterEqual(1)), Element(n, ZZ)), Element(SloaneA(X, n), Union(ZZ, Set(Undefined))))),
Variables(X, n))
pn=A000040(n)
Assumptions:n∈Z≥1
References:
- Sequence A000040 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
p_{n} = \text{A000040}\!\left(n\right)
n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|
PrimeNumber | pn
| nth prime number |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("9d0839"),
Formula(Equal(PrimeNumber(n), SloaneA("A000040", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))))
p(n)=A000041(n)
Assumptions:n∈Z≥0
References:
- Sequence A000041 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
p(n) = \text{A000041}\!\left(n\right)
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
PartitionsP | p(n)
| Integer partition function |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("8eed2c"),
Formula(Equal(PartitionsP(n), SloaneA("A000041", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))
Fn=A000045(n)
Assumptions:n∈Z≥0
References:
- Sequence A000045 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
F_{n} = \text{A000045}\!\left(n\right)
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Fibonacci | Fn
| Fibonacci number |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("373aa1"),
Formula(Equal(Fibonacci(n), SloaneA("A000045", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))
Bn=A000110(n)
Assumptions:n∈Z≥0
References:
- Sequence A000110 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
B_{n} = \text{A000110}\!\left(n\right)
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BellNumber | Bn
| Bell number |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("60dc3e"),
Formula(Equal(BellNumber(n), SloaneA("A000110", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))
n!=A000142(n)
Assumptions:n∈Z≥0
References:
- Sequence A000142 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
n ! = \text{A000142}\!\left(n\right)
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Factorial | n!
| Factorial |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("d12aa0"),
Formula(Equal(Factorial(n), SloaneA("A000142", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))
π(n)=A000720(n)
Assumptions:n∈Z≥0
References:
- Sequence A000720 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
\pi(n) = \text{A000720}\!\left(n\right)
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
PrimePi | π(x)
| Prime counting function |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4fa169"),
Formula(Equal(PrimePi(n), SloaneA("A000720", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))
g(n)=A000793(n)
Assumptions:n∈Z≥0
References:
- Sequence A000793 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
g(n) = \text{A000793}\!\left(n\right)
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
LandauG | g(n)
| Landau's function |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6af603"),
Formula(Equal(LandauG(n), SloaneA("A000793", n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))
π=n=1∑∞A000796(n)101−n
References:
- Sequence A000796 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
\pi = \sum_{n=1}^{\infty} \text{A000796}\!\left(n\right) {10}^{1 - n}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pi | π
| The constant pi (3.14...) |
Sum | ∑nf(n)
| Sum |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("483547"),
Formula(Equal(Pi, Sum(Mul(SloaneA("A000796", n), Pow(10, Sub(1, n))), For(n, 1, Infinity)))))
Bn=A027642(n)A027641(n)
Assumptions:n∈Z≥0
References:
- Sequence A027641 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
- Sequence A027642 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
B_{n} = \frac{\text{A027641}\!\left(n\right)}{\text{A027642}\!\left(n\right)}
n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|
BernoulliB | Bn
| Bernoulli number |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("b6111c"),
Formula(Equal(BernoulliB(n), Div(SloaneA("A027641", n), SloaneA("A027642", n)))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))