Symbol: ConstI — i
— Imaginary unit
Represents the constant
i, the imaginary unit.
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("be8e05"),
SymbolDefinition(ConstI, ConstI, "Imaginary unit"),
Description("Represents the constant", i, ", the imaginary unit."))
TeX:
i \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("88ad6f"),
Formula(Element(ConstI, CC)))
i∈Q
TeX:
i \in \overline{\mathbb{Q}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
AlgebraicNumbers | Q
| Algebraic numbers |
Source code for this entry:
Entry(ID("cd8a07"),
Formula(Element(ConstI, AlgebraicNumbers)))
i∈/R
TeX:
i \notin \mathbb{R}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("a08fb9"),
Formula(NotElement(ConstI, RR)))
x∈Csolutions[x2+1=0]={i,−i}
TeX:
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[{x}^{2} + 1 = 0\right] = \left\{i, -i\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Solutions | x∈SsolutionsQ(x)
| Solution set |
Pow | ab
| Power |
CC | C
| Complex numbers |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("08ad28"),
Formula(Equal(Solutions(Brackets(Equal(Add(Pow(x, 2), 1), 0)), ForElement(x, CC)), Set(ConstI, Neg(ConstI)))))
TeX:
i = \sqrt{-1}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
Sqrt | z
| Principal square root |
Source code for this entry:
Entry(ID("72cef9"),
Formula(Equal(ConstI, Sqrt(-1))))
i=(−1)1/2
TeX:
i = {\left(-1\right)}^{1 / 2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
Pow | ab
| Power |
Source code for this entry:
Entry(ID("27586f"),
Formula(Equal(ConstI, Pow(-1, Div(1, 2)))))
∣i∣=1
TeX:
\left|i\right| = 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
Abs | ∣z∣
| Absolute value |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("65bbd6"),
Formula(Equal(Abs(ConstI), 1)))
Re(i)=0
TeX:
\operatorname{Re}(i) = 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
Re | Re(z)
| Real part |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("249fd6"),
Formula(Equal(Re(ConstI), 0)))
Im(i)=1
TeX:
\operatorname{Im}(i) = 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
Im | Im(z)
| Imaginary part |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("61784f"),
Formula(Equal(Im(ConstI), 1)))
arg(i)=2π
TeX:
\arg(i) = \frac{\pi}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Arg | arg(z)
| Complex argument |
ConstI | i
| Imaginary unit |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("735409"),
Formula(Equal(Arg(ConstI), Div(Pi, 2))))
arg(−i)=−2π
TeX:
\arg\!\left(-i\right) = -\frac{\pi}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Arg | arg(z)
| Complex argument |
ConstI | i
| Imaginary unit |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("089f85"),
Formula(Equal(Arg(Neg(ConstI)), Neg(Div(Pi, 2)))))
sgn(i)=i
TeX:
\operatorname{sgn}(i) = i
Definitions:
Fungrim symbol | Notation | Short description |
---|
Sign | sgn(z)
| Sign function |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("09c107"),
Formula(Equal(Sign(ConstI), ConstI)))
TeX:
{i}^{2} = -1
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("31b0df"),
Formula(Equal(Pow(ConstI, 2), -1)))
TeX:
{i}^{3} = -i
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("8be138"),
Formula(Equal(Pow(ConstI, 3), Neg(ConstI))))
TeX:
{i}^{4} = 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("e0425a"),
Formula(Equal(Pow(ConstI, 4), 1)))
in=⎩⎪⎪⎪⎨⎪⎪⎪⎧1,i,−1,−i,n≡0(mod4)n≡1(mod4)n≡2(mod4)n≡3(mod4)
Assumptions:n∈Z
TeX:
{i}^{n} = \begin{cases} 1, & n \equiv 0 \pmod {4}\\i, & n \equiv 1 \pmod {4}\\-1, & n \equiv 2 \pmod {4}\\-i, & n \equiv 3 \pmod {4}\\ \end{cases}
n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
ZZ | Z
| Integers |
Source code for this entry:
Entry(ID("c12a41"),
Formula(Equal(Pow(ConstI, n), Cases(Tuple(1, CongruentMod(n, 0, 4)), Tuple(ConstI, CongruentMod(n, 1, 4)), Tuple(-1, CongruentMod(n, 2, 4)), Tuple(Neg(ConstI), CongruentMod(n, 3, 4))))),
Variables(n),
Assumptions(Element(n, ZZ)))
i=−i
TeX:
\overline{i} = -i
Definitions:
Fungrim symbol | Notation | Short description |
---|
Conjugate | z
| Complex conjugate |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("44ae4a"),
Formula(Equal(Conjugate(ConstI), Neg(ConstI))))
i1=−i
TeX:
\frac{1}{i} = -i
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("67c262"),
Formula(Equal(Div(1, ConstI), Neg(ConstI))))
iz=eπiz/2
Assumptions:z∈C
TeX:
{i}^{z} = {e}^{\pi i z / 2}
z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Exp | ez
| Exponential function |
Pi | π
| The constant pi (3.14...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("f8a56f"),
Formula(Equal(Pow(ConstI, z), Exp(Div(Mul(Mul(Pi, ConstI), z), 2)))),
Variables(z),
Assumptions(Element(z, CC)))
iz=cos(2πz)+sin(2πz)i
Assumptions:z∈C
TeX:
{i}^{z} = \cos\!\left(\frac{\pi}{2} z\right) + \sin\!\left(\frac{\pi}{2} z\right) i
z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Cos | cos(z)
| Cosine |
Pi | π
| The constant pi (3.14...) |
Sin | sin(z)
| Sine |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("15f92d"),
Formula(Equal(Pow(ConstI, z), Add(Cos(Mul(Div(Pi, 2), z)), Mul(Sin(Mul(Div(Pi, 2), z)), ConstI)))),
Variables(z),
Assumptions(Element(z, CC)))
i=21(1+i)
TeX:
\sqrt{i} = \frac{1}{\sqrt{2}} \left(1 + i\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
Sqrt | z
| Principal square root |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("0ad836"),
Formula(Equal(Sqrt(ConstI), Mul(Div(1, Sqrt(2)), Add(1, ConstI)))))
ii=e−π/2
TeX:
{i}^{i} = {e}^{-\pi / 2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Exp | ez
| Exponential function |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("a39534"),
Formula(Equal(Pow(ConstI, ConstI), Exp(Neg(Div(Pi, 2))))))
log(i)=2πi
TeX:
\log(i) = \frac{\pi i}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Log | log(z)
| Natural logarithm |
ConstI | i
| Imaginary unit |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("c331da"),
Formula(Equal(Log(ConstI), Div(Mul(Pi, ConstI), 2))))
∣Γ(i)∣=sinh(π)π
TeX:
\left|\Gamma(i)\right| = \sqrt{\frac{\pi}{\sinh(\pi)}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Abs | ∣z∣
| Absolute value |
Gamma | Γ(z)
| Gamma function |
ConstI | i
| Imaginary unit |
Sqrt | z
| Principal square root |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("9c93bb"),
Formula(Equal(Abs(Gamma(ConstI)), Sqrt(Div(Pi, Sinh(Pi))))))
Im(ψ(i))=21(πcoth(π)+1)
TeX:
\operatorname{Im}\!\left(\psi\!\left(i\right)\right) = \frac{1}{2} \left(\pi \coth(\pi) + 1\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
Im | Im(z)
| Imaginary part |
DigammaFunction | ψ(z)
| Digamma function |
ConstI | i
| Imaginary unit |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("3ac0ce"),
Formula(Equal(Im(DigammaFunction(ConstI)), Mul(Div(1, 2), Add(Mul(Pi, Coth(Pi)), 1)))))
Li2(i)=−48π2+Gi
TeX:
\operatorname{Li}_{2}\!\left(i\right) = -\frac{{\pi}^{2}}{48} + G i
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
Pow | ab
| Power |
Pi | π
| The constant pi (3.14...) |
ConstCatalan | G
| Catalan's constant |
Source code for this entry:
Entry(ID("208da7"),
Formula(Equal(PolyLog(2, ConstI), Add(Neg(Div(Pow(Pi, 2), 48)), Mul(ConstCatalan, ConstI)))))