Symbol: HalphenConstant — Λ
— Halphen's constant (one-ninth constant) 0.10765...
►HalphenConstant — Λ
— Represents Halphen's constant, also known as the one-ninth constant.
►Div(1, HalphenConstant) — Λ1
— Represents the reciprocal of Halphen's constant, also called Varga's constant.
References:
- S. Finch (2003), Mathematical Constants, Cambridge University Press, section 4.5
- https://www.chebfun.org/examples/approx/Halphen.html
- http://mathworld.wolfram.com/One-NinthConstant.html
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
Source code for this entry:
Entry(ID("6161c7"),
SymbolDefinition(HalphenConstant, HalphenConstant, "Halphen's constant (one-ninth constant) 0.10765..."),
CodeExample(HalphenConstant, "Represents Halphen's constant, also known as the one-ninth constant."),
CodeExample(Div(1, HalphenConstant), "Represents the reciprocal of Halphen's constant, also called Varga's constant."),
References("S. Finch (2003), Mathematical Constants, Cambridge University Press, section 4.5", "https://www.chebfun.org/examples/approx/Halphen.html", "http://mathworld.wolfram.com/One-NinthConstant.html"))
Λ=0.10765391922648457661532344509094719058797656329012(nearest 50 digits)
References:
- Sequence A072558 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
\Lambda = 0.10765391922648457661532344509094719058797656329012 \;\, {\scriptstyle (\text{nearest } 50 \text{ digits})}
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
Source code for this entry:
Entry(ID("e2bfdb"),
Formula(EqualNearestDecimal(HalphenConstant, Decimal("0.10765391922648457661532344509094719058797656329012"), 50)),
References(SloaneA("A072558")))
Λ1=9.2890254919208189187554494359517450610316948677501(nearest 50 digits)
References:
- Sequence A073007 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
\frac{1}{\Lambda} = 9.2890254919208189187554494359517450610316948677501 \;\, {\scriptstyle (\text{nearest } 50 \text{ digits})}
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
SloaneA | A00000X(n)
| Sequence X in Sloane's OEIS |
Source code for this entry:
Entry(ID("f5e0b0"),
Formula(EqualNearestDecimal(Div(1, HalphenConstant), Decimal("9.2890254919208189187554494359517450610316948677501"), 50)),
References(SloaneA("A073007")))
Λ=91
TeX:
\Lambda \ne \frac{1}{9}
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
Source code for this entry:
Entry(ID("d0993b"),
Formula(NotEqual(HalphenConstant, Div(1, 9))))
Λ=n→∞limλn1/n where R={r:r∈R(t)anddeg(r)≤(n,n)},λn=r∈Rinfx∈(−∞,0]sup∣ex−r(x)∣
TeX:
\Lambda = \lim_{n \to \infty} {\lambda}_{n}^{1 / n}\; \text{ where } R = \left\{ r : r \in \mathbb{R}(t) \,\mathbin{\operatorname{and}}\, \deg(r) \le \left(n, n\right) \right\},\;{\lambda}_{n} = \mathop{\operatorname{inf}}\limits_{r \in R} \mathop{\operatorname{sup}}\limits_{x \in \left(-\infty, 0\right]} \left|{e}^{x} - r(x)\right|
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
SequenceLimit | limn→af(n)
| Limiting value of sequence |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
RR | R
| Real numbers |
Infimum | x∈Sinff(x)
| Infimum of a set or function |
Supremum | x∈Ssupf(x)
| Supremum of a set or function |
Abs | ∣z∣
| Absolute value |
Exp | ez
| Exponential function |
OpenClosedInterval | (a,b]
| Open-closed interval |
Source code for this entry:
Entry(ID("5c1e44"),
Formula(Equal(HalphenConstant, Where(SequenceLimit(Pow(Subscript(lamda, n), Div(1, n)), For(n, Infinity)), Equal(R, Set(r, ForElement(r, RationalFunctions(RR, t)), LessEqual(RationalFunctionDegree(r), Tuple(n, n)))), Equal(Subscript(lamda, n), Infimum(Supremum(Abs(Sub(Exp(x), r(x))), ForElement(x, OpenClosedInterval(Neg(Infinity), 0))), ForElement(r, R)))))))
Λ=x∈(0,1)zero*[−81+n=1∑∞1−(−x)nnxn]
TeX:
\Lambda = \mathop{\operatorname{zero*}\,}\limits_{x \in \left(0, 1\right)} \left[-\frac{1}{8} + \sum_{n=1}^{\infty} \frac{n {x}^{n}}{1 - {\left(-x\right)}^{n}}\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
UniqueZero | x∈Szero*f(x)
| Unique zero (root) of function |
Sum | ∑nf(n)
| Sum |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
OpenInterval | (a,b)
| Open interval |
Source code for this entry:
Entry(ID("9758ac"),
Formula(Equal(HalphenConstant, UniqueZero(Add(Neg(Div(1, 8)), Sum(Div(Mul(n, Pow(x, n)), Sub(1, Pow(Neg(x), n))), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1))))))
Λ=x∈(0,1)zero*[n=0∑∞(2n+1)2(−x)n(n+1)/2]
TeX:
\Lambda = \mathop{\operatorname{zero*}\,}\limits_{x \in \left(0, 1\right)} \left[\sum_{n=0}^{\infty} {\left(2 n + 1\right)}^{2} {\left(-x\right)}^{n \left(n + 1\right) / 2}\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
UniqueZero | x∈Szero*f(x)
| Unique zero (root) of function |
Sum | ∑nf(n)
| Sum |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
OpenInterval | (a,b)
| Open interval |
Source code for this entry:
Entry(ID("31adf6"),
Formula(Equal(HalphenConstant, UniqueZero(Brackets(Sum(Mul(Pow(Add(Mul(2, n), 1), 2), Pow(Neg(x), Div(Mul(n, Add(n, 1)), 2))), For(n, 0, Infinity))), ForElement(x, OpenInterval(0, 1))))))
Λ=x∈(0,1)zero*⎣⎡−81+n=1∑∞∣∣∣∣∣∣d∣n∑(−1)dd∣∣∣∣∣∣xn⎦⎤
TeX:
\Lambda = \mathop{\operatorname{zero*}\,}\limits_{x \in \left(0, 1\right)} \left[-\frac{1}{8} + \sum_{n=1}^{\infty} \left|\sum_{d \mid n} {\left(-1\right)}^{d} d\right| {x}^{n}\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
UniqueZero | x∈Szero*f(x)
| Unique zero (root) of function |
Sum | ∑nf(n)
| Sum |
Abs | ∣z∣
| Absolute value |
DivisorSum | ∑k∣nf(k)
| Sum over divisors |
Pow | ab
| Power |
Infinity | ∞
| Positive infinity |
OpenInterval | (a,b)
| Open interval |
Source code for this entry:
Entry(ID("831ea4"),
Formula(Equal(HalphenConstant, UniqueZero(Add(Neg(Div(1, 8)), Sum(Mul(Abs(DivisorSum(Mul(Pow(-1, d), d), For(d, n))), Pow(x, n)), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1))))))
Λ=exp(−K(c)πK(1−c)) where c=m∈(0,1)zero*[K(m)−2E(m)]
TeX:
\Lambda = \exp\!\left(-\frac{\pi K\!\left(1 - c\right)}{K(c)}\right)\; \text{ where } c = \mathop{\operatorname{zero*}\,}\limits_{m \in \left(0, 1\right)} \left[K(m) - 2 E(m)\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
Exp | ez
| Exponential function |
Pi | π
| The constant pi (3.14...) |
EllipticK | K(m)
| Legendre complete elliptic integral of the first kind |
UniqueZero | x∈Szero*f(x)
| Unique zero (root) of function |
EllipticE | E(m)
| Legendre complete elliptic integral of the second kind |
OpenInterval | (a,b)
| Open interval |
Source code for this entry:
Entry(ID("c26bc9"),
Formula(Equal(HalphenConstant, Where(Exp(Neg(Div(Mul(Pi, EllipticK(Sub(1, c))), EllipticK(c)))), Equal(c, UniqueZero(Sub(EllipticK(m), Mul(2, EllipticE(m))), ForElement(m, OpenInterval(0, 1))))))))
Λ=x∈(0,1)zero*[θ2′′(0,2πilog(−x))]
TeX:
\Lambda = \mathop{\operatorname{zero*}\,}\limits_{x \in \left(0, 1\right)} \left[\theta''_{2}\!\left(0 , \frac{\log\!\left(-x\right)}{2 \pi i}\right)\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
HalphenConstant | Λ
| Halphen's constant (one-ninth constant) 0.10765... |
UniqueZero | x∈Szero*f(x)
| Unique zero (root) of function |
JacobiTheta | θj(z,τ)
| Jacobi theta function |
Log | log(z)
| Natural logarithm |
Pi | π
| The constant pi (3.14...) |
ConstI | i
| Imaginary unit |
OpenInterval | (a,b)
| Open interval |
Source code for this entry:
Entry(ID("06c468"),
Formula(Equal(HalphenConstant, UniqueZero(Brackets(JacobiTheta(2, 0, Div(Log(Neg(x)), Mul(Mul(2, Pi), ConstI)), 2)), ForElement(x, OpenInterval(0, 1))))))