Symbol: GoldenRatio — φ
— The golden ratio (1.618...)
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("37f505"),
SymbolDefinition(GoldenRatio, GoldenRatio, "The golden ratio (1.618...)"))
φ∈[1.6180339887498948482045868343656381177203091798058±3.72⋅10−50]
TeX:
\varphi \in \left[1.6180339887498948482045868343656381177203091798058 \pm 3.72 \cdot 10^{-50}\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("08fcaf"),
Formula(Element(GoldenRatio, RealBall(Decimal("1.6180339887498948482045868343656381177203091798058"), Decimal("3.72e-50")))))
φ=21+5
TeX:
\varphi = \frac{1 + \sqrt{5}}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Sqrt | z
| Principal square root |
Source code for this entry:
Entry(ID("77d2f8"),
Formula(Equal(GoldenRatio, Div(Add(1, Sqrt(5)), 2))))
φ∈/Q
TeX:
\varphi \notin \mathbb{Q}
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
QQ | Q
| Rational numbers |
Source code for this entry:
Entry(ID("e09458"),
Formula(NotElement(GoldenRatio, QQ)))
φ1=φ−1
TeX:
\frac{1}{\varphi} = \varphi - 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("31f52c"),
Formula(Equal(Div(1, GoldenRatio), Sub(GoldenRatio, 1))))
φ2−φ−1=0
TeX:
{\varphi}^{2} - \varphi - 1 = 0
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("b464d3"),
Formula(Equal(Sub(Sub(Pow(GoldenRatio, 2), GoldenRatio), 1), 0)))
(aa+b=ba)⟹(ba=φ)
Assumptions:a∈(0,∞)andb∈(0,∞)
TeX:
\left(\frac{a + b}{a} = \frac{a}{b}\right) \;\implies\; \left(\frac{a}{b} = \varphi\right)
a \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; b \in \left(0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
OpenInterval | (a,b)
| Open interval |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("d774fe"),
Formula(Implies(Equal(Div(Add(a, b), a), Div(a, b)), Equal(Div(a, b), GoldenRatio))),
Variables(a, b),
Assumptions(And(Element(a, OpenInterval(0, Infinity)), Element(b, OpenInterval(0, Infinity)))))
x∈Czeros[x2−x−1]={φ,1−φ}
TeX:
\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} \left[{x}^{2} - x - 1\right] = \left\{\varphi, 1 - \varphi\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Zeros | x∈Szerosf(x)
| Zeros (roots) of function |
Pow | ab
| Power |
CC | C
| Complex numbers |
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("77c324"),
Formula(Equal(Zeros(Sub(Sub(Pow(x, 2), x), 1), ForElement(x, CC)), Set(GoldenRatio, Sub(1, GoldenRatio)))))
φ=1+φ1
TeX:
\varphi = 1 + \frac{1}{\varphi}
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("6d2709"),
Formula(Equal(GoldenRatio, Add(1, Div(1, GoldenRatio)))))
φ=1+1+φ11
TeX:
\varphi = 1 + \frac{1}{1 + \frac{1}{\varphi}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("2e0596"),
Formula(Equal(GoldenRatio, Add(1, Div(1, Add(1, Div(1, GoldenRatio)))))))
spec(1110)={φ,1−φ}
TeX:
\operatorname{spec}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \left\{\varphi, 1 - \varphi\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Matrix2x2 | (acbd)
| Two by two matrix |
GoldenRatio | φ
| The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("ebfcd8"),
Formula(Equal(Spectrum(Matrix2x2(1, 1, 1, 0)), Set(GoldenRatio, Sub(1, GoldenRatio)))))
φ=2cos(5π)
TeX:
\varphi = 2 \cos\!\left(\frac{\pi}{5}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Cos | cos(z)
| Cosine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("98a765"),
Formula(Equal(GoldenRatio, Mul(2, Cos(Div(Pi, 5))))))
φ=2sin(103π)
TeX:
\varphi = 2 \sin\!\left(\frac{3 \pi}{10}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Sin | sin(z)
| Sine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("487e35"),
Formula(Equal(GoldenRatio, Mul(2, Sin(Div(Mul(3, Pi), 10))))))
φ=2sin(10π)+1
TeX:
\varphi = 2 \sin\!\left(\frac{\pi}{10}\right) + 1
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Sin | sin(z)
| Sine |
Pi | π
| The constant pi (3.14...) |
Source code for this entry:
Entry(ID("fad16f"),
Formula(Equal(GoldenRatio, Add(Mul(2, Sin(Div(Pi, 10))), 1))))
φn+1=φn+φn−1
Assumptions:n∈C
TeX:
{\varphi}^{n + 1} = {\varphi}^{n} + {\varphi}^{n - 1}
n \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
GoldenRatio | φ
| The golden ratio (1.618...) |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("0cd1a4"),
Formula(Equal(Pow(GoldenRatio, Add(n, 1)), Add(Pow(GoldenRatio, n), Pow(GoldenRatio, Sub(n, 1))))),
Variables(n),
Assumptions(Element(n, CC)))
φn=Fnφ+Fn−1
Assumptions:n∈Z
TeX:
{\varphi}^{n} = F_{n} \varphi + F_{n - 1}
n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
GoldenRatio | φ
| The golden ratio (1.618...) |
Fibonacci | Fn
| Fibonacci number |
ZZ | Z
| Integers |
Source code for this entry:
Entry(ID("6a11ce"),
Formula(Equal(Pow(GoldenRatio, n), Add(Mul(Fibonacci(n), GoldenRatio), Fibonacci(Sub(n, 1))))),
Variables(n),
Assumptions(Element(n, ZZ)))
φ=n→∞limFnFn+1
TeX:
\varphi = \lim_{n \to \infty} \frac{F_{n + 1}}{F_{n}}
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
SequenceLimit | limn→af(n)
| Limiting value of sequence |
Fibonacci | Fn
| Fibonacci number |
Infinity | ∞
| Positive infinity |
Source code for this entry:
Entry(ID("2b6e60"),
Formula(Equal(GoldenRatio, SequenceLimit(Div(Fibonacci(Add(n, 1)), Fibonacci(n)), For(n, Infinity)))))
φ=51(η(5i)η(i))2
TeX:
\varphi = \frac{1}{5} {\left(\frac{\eta(i)}{\eta\!\left(5 i\right)}\right)}^{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|
GoldenRatio | φ
| The golden ratio (1.618...) |
Pow | ab
| Power |
DedekindEta | η(τ)
| Dedekind eta function |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("e9a269"),
Formula(Equal(GoldenRatio, Mul(Div(1, 5), Pow(Div(DedekindEta(ConstI), DedekindEta(Mul(5, ConstI))), 2)))))