Fungrim home page

Euler's constant

Table of contents: Numerical value - Limit representations - Special function representations - Integral representations - Approximations - Related topics

39e0cb
Symbol: ConstGamma γ\gamma The constant gamma (0.577...)

Numerical value

e876e8
γ[0.57721566490153286060651209008240243104215933593992±3.601051]\gamma \in \left[0.57721566490153286060651209008240243104215933593992 \pm 3.60 \cdot 10^{-51}\right]
28bf9a
γ{pq:pZandqZ1andq10242080}\gamma \notin \left\{ \frac{p}{q} : p \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, q \le {10}^{242080} \right\}

Limit representations

4644c0
γ=limnk=1n1klog ⁣(n)\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log\!\left(n\right)

Special function representations

a1f1ec
γ=lims1ζ ⁣(s)1s1\gamma = \lim_{s \to 1} \zeta\!\left(s\right) - \frac{1}{s - 1}
cf3977
γ=Γ(1)\gamma = -\Gamma'(1)
d17d0b
γ=ψ ⁣(1)\gamma = -\psi\!\left(1\right)
818008
γ=1k=2ζ ⁣(k)1k\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta\!\left(k\right) - 1}{k}

Integral representations

39fe5f
γ=0exlog ⁣(x)dx\gamma = -\int_{0}^{\infty} {e}^{-x} \log\!\left(x\right) \, dx
a1ca3e
γ=01log ⁣(log ⁣(1x))dx\gamma = -\int_{0}^{1} \log\!\left(\log\!\left(\frac{1}{x}\right)\right) \, dx

Approximations

014c4e
γ(SITI2log ⁣(n))<24e8n   where (S,I,T)=(k=05nHkn2k(k!)2,k=05nn2k(k!)2,14nk=02n1((2k)!)3(k!)482k(2n)2k)\left|\gamma - \left(\frac{S}{I} - \frac{T}{{I}^{2}} - \log\!\left(n\right)\right)\right| \lt 24 {e}^{-8 n}\; \text{ where } \left(S, I, T\right) = \left(\sum_{k=0}^{5 n} \frac{H_{k} {n}^{2 k}}{{\left(k !\right)}^{2}}, \sum_{k=0}^{5 n} \frac{{n}^{2 k}}{{\left(k !\right)}^{2}}, \frac{1}{4 n} \sum_{k=0}^{2 n - 1} \frac{{\left(\left(2 k\right)!\right)}^{3}}{{\left(k !\right)}^{4} {8}^{2 k} {\left(2 n\right)}^{2 k}}\right)

Related topics: Gamma function, Riemann zeta function

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC