Fungrim home page

Fungrim entry: 28bf9a

γ{pq:pZandqZ1andq10242080}\gamma \notin \left\{ \frac{p}{q} : p \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, q \le {10}^{242080} \right\}
References:
  • J. Havil (2003): Exploring Euler's Constant. Princeton University Press. Page 97.
TeX:
\gamma \notin \left\{ \frac{p}{q} : p \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, q \le {10}^{242080} \right\}
Definitions:
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Powab{a}^{b} Power
Source code for this entry:
Entry(ID("28bf9a"),
    Formula(NotElement(ConstGamma, SetBuilder(Div(p, q), Tuple(p, q), And(Element(p, ZZ), Element(q, ZZGreaterEqual(1)), LessEqual(q, Pow(10, 242080)))))),
    References("J. Havil (2003): Exploring Euler's Constant. Princeton University Press. Page 97."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC