Table of contents: Definitions - Illustrations - Integral representations - Connection formulas - Functional equations - Hypergeometric representations - Derivatives
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
Entry(ID("e46223"), SymbolDefinition(Erf, Erf(z), "Error function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | erfc(z) | Complementary error function |
Entry(ID("7375c0"), SymbolDefinition(Erfc, Erfc(z), "Complementary error function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Erfi | erfi(z) | Imaginary error function |
Entry(ID("d2914b"), SymbolDefinition(Erfi, Erfi(z), "Imaginary error function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
ClosedInterval | [a,b] | Closed interval |
ConstI | i | Imaginary unit |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Abs | ∣z∣ | Absolute value |
Entry(ID("3be335"), Image(Description("X-ray of", Erf(z), "on", Element(z, Add(ClosedInterval(-4, 4), Mul(ClosedInterval(-4, 4), ConstI)))), ImageSource("xray_erf")), Description("An X-ray plot illustrates the geometry of a complex analytic function", f(z), ".", "Thick black curves show where", Equal(Im(f(z)), 0), "(the function is pure real).", "Thick red curves show where", Equal(Re(f(z)), 0), "(the function is pure imaginary).", "Points where black and red curves intersect are zeros or poles.", "Magnitude level curves", Equal(Abs(f(z)), C), "are rendered as thin gray curves, with brighter shades corresponding to larger", C, ".", "Blue lines show branch cuts.", "The value of the function is continuous with the branch cut on the side indicated with a solid line, and discontinuous on the side indicated with a dashed line.", "Yellow is used to highlight important regions."))
\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} {e}^{-{t}^{2}} \, dt z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Integral | ∫abf(x)dx | Integral |
Exp | ez | Exponential function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("2aaba8"), Formula(Equal(Erf(z), Mul(Div(2, Sqrt(Pi)), Integral(Exp(Neg(Pow(t, 2))), For(t, 0, z))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} {e}^{-{t}^{2}} \, dt z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | erfc(z) | Complementary error function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Integral | ∫abf(x)dx | Integral |
Exp | ez | Exponential function |
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Entry(ID("36ef64"), Formula(Equal(Erfc(z), Mul(Div(2, Sqrt(Pi)), Integral(Exp(Neg(Pow(t, 2))), For(t, z, Infinity))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erfi}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} {e}^{{t}^{2}} \, dt z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erfi | erfi(z) | Imaginary error function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Integral | ∫abf(x)dx | Integral |
Exp | ez | Exponential function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("622772"), Formula(Equal(Erfi(z), Mul(Div(2, Sqrt(Pi)), Integral(Exp(Pow(t, 2)), For(t, 0, z))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erf}(z) + \operatorname{erfc}(z) = 1 z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
Erfc | erfc(z) | Complementary error function |
CC | C | Complex numbers |
Entry(ID("7f355d"), Formula(Equal(Add(Erf(z), Erfc(z)), 1)), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erfc}(z) = 1 - \operatorname{erf}(z) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | erfc(z) | Complementary error function |
Erf | erf(z) | Error function |
CC | C | Complex numbers |
Entry(ID("bfc86e"), Formula(Equal(Erfc(z), Sub(1, Erf(z)))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erfi}(z) = -i \operatorname{erf}\!\left(i z\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erfi | erfi(z) | Imaginary error function |
ConstI | i | Imaginary unit |
Erf | erf(z) | Error function |
CC | C | Complex numbers |
Entry(ID("01440f"), Formula(Equal(Erfi(z), Neg(Mul(ConstI, Erf(Mul(ConstI, z)))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erf}\!\left(-z\right) = -\operatorname{erf}(z) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
CC | C | Complex numbers |
Entry(ID("94db18"), Formula(Equal(Erf(Neg(z)), Neg(Erf(z)))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erfi}\!\left(-z\right) = -\operatorname{erfi}(z) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erfi | erfi(z) | Imaginary error function |
CC | C | Complex numbers |
Entry(ID("603a49"), Formula(Equal(Erfi(Neg(z)), Neg(Erfi(z)))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erfc}\!\left(-z\right) = 2 - \operatorname{erfc}(z) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | erfc(z) | Complementary error function |
CC | C | Complex numbers |
Entry(ID("ec0205"), Formula(Equal(Erfc(Neg(z)), Sub(2, Erfc(z)))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erf}(z) = \frac{2 z}{\sqrt{\pi}} \,{}_1F_1\!\left(\frac{1}{2}, \frac{3}{2}, -{z}^{2}\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("abadc7"), Formula(Equal(Erf(z), Mul(Div(Mul(2, z), Sqrt(Pi)), Hypergeometric1F1(Div(1, 2), Div(3, 2), Neg(Pow(z, 2)))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erf}(z) = \frac{2 z {e}^{-{z}^{2}}}{\sqrt{\pi}} \,{}_1F_1\!\left(1, \frac{3}{2}, {z}^{2}\right) z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
Exp | ez | Exponential function |
Pow | ab | Power |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
CC | C | Complex numbers |
Entry(ID("98688d"), Formula(Equal(Erf(z), Mul(Div(Mul(Mul(2, z), Exp(Neg(Pow(z, 2)))), Sqrt(Pi)), Hypergeometric1F1(1, Div(3, 2), Pow(z, 2))))), Variables(z), Assumptions(Element(z, CC)))
\operatorname{erf}(z) = \frac{z}{\sqrt{{z}^{2}}} - \frac{{e}^{-{z}^{2}}}{z \sqrt{\pi}} U^{*}\!\left(\frac{1}{2}, \frac{1}{2}, {z}^{2}\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0
Fungrim symbol | Notation | Short description |
---|---|---|
Erf | erf(z) | Error function |
Sqrt | z | Principal square root |
Pow | ab | Power |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
Entry(ID("cb93ea"), Formula(Equal(Erf(z), Sub(Div(z, Sqrt(Pow(z, 2))), Mul(Div(Exp(Neg(Pow(z, 2))), Mul(z, Sqrt(Pi))), HypergeometricUStar(Div(1, 2), Div(1, 2), Pow(z, 2)))))), Variables(z), Assumptions(And(Element(z, CC), NotEqual(z, 0))))
\operatorname{erfc}(z) = \frac{{e}^{-{z}^{2}}}{z \sqrt{\pi}} U^{*}\!\left(\frac{1}{2}, \frac{1}{2}, {z}^{2}\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | erfc(z) | Complementary error function |
Exp | ez | Exponential function |
Pow | ab | Power |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
Re | Re(z) | Real part |
Entry(ID("ae3110"), Formula(Equal(Erfc(z), Mul(Div(Exp(Neg(Pow(z, 2))), Mul(z, Sqrt(Pi))), HypergeometricUStar(Div(1, 2), Div(1, 2), Pow(z, 2))))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))
\operatorname{erf}'(z) = \frac{2}{\sqrt{\pi}} {e}^{-{z}^{2}} z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Erf | erf(z) | Error function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Exp | ez | Exponential function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("b5bd5d"), Formula(Equal(ComplexDerivative(Erf(z), For(z, z, 1)), Mul(Div(2, Sqrt(Pi)), Exp(Neg(Pow(z, 2)))))), Variables(z), Assumptions(Element(z, CC)))
{\operatorname{erf}}^{(n)}(z) = \frac{2}{\sqrt{\pi}} {\left(-1\right)}^{n + 1} H_{n - 1}\!\left(z\right) {e}^{-{z}^{2}} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Erf | erf(z) | Error function |
Sqrt | z | Principal square root |
Pi | π | The constant pi (3.14...) |
Pow | ab | Power |
HermitePolynomial | Hn(z) | Hermite polynomial |
Exp | ez | Exponential function |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("fae9d3"), Formula(Equal(ComplexDerivative(Erf(z), For(z, z, n)), Mul(Mul(Mul(Div(2, Sqrt(Pi)), Pow(-1, Add(n, 1))), HermitePolynomial(Sub(n, 1), z)), Exp(Neg(Pow(z, 2)))))), Variables(z, n), Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(1)))))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC