dzrdrθj(z,τ)=θj(r)(z,τ)
Assumptions:j∈{1,2,3,4}andz∈Candτ∈Handr∈Z≥0
TeX:
\frac{d^{r}}{{d z}^{r}} \theta_{j}\!\left(z , \tau\right) = \theta^{(r)}_{j}\!\left(z , \tau\right) j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
JacobiTheta | θj(z,τ) | Jacobi theta function |
CC | C | Complex numbers |
HH | H | Upper complex half-plane |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("a222ed"), Formula(Equal(ComplexDerivative(JacobiTheta(j, z, tau), For(z, z, r)), JacobiTheta(j, z, tau, r))), Variables(j, z, tau, r), Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)))))