∫z∞(ax+b)c1dx=a(c−1)(az+b)c−11
Assumptions:a∈Randb∈Randc∈Randz∈Randa>0andaz+b>0andc>1
TeX:
\int_{z}^{\infty} \frac{1}{{\left(a x + b\right)}^{c}} \, dx = \frac{1}{a \left(c - 1\right) {\left(a z + b\right)}^{c - 1}} a \in \mathbb{R} \,\mathbin{\operatorname{and}}\, b \in \mathbb{R} \,\mathbin{\operatorname{and}}\, c \in \mathbb{R} \,\mathbin{\operatorname{and}}\, z \in \mathbb{R} \,\mathbin{\operatorname{and}}\, a \gt 0 \,\mathbin{\operatorname{and}}\, a z + b \gt 0 \,\mathbin{\operatorname{and}}\, c \gt 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | ab | Power |
Infinity | ∞ | Positive infinity |
RR | R | Real numbers |
Source code for this entry:
Entry(ID("463077"), Formula(Equal(Integral(Div(1, Pow(Add(Mul(a, x), b), c)), Tuple(x, z, Infinity)), Div(1, Mul(Mul(a, Sub(c, 1)), Pow(Add(Mul(a, z), b), Sub(c, 1)))))), Variables(a, b, c, z), Assumptions(And(Element(a, RR), Element(b, RR), Element(c, RR), Element(z, RR), Greater(a, 0), Greater(Add(Mul(a, z), b), 0), Greater(c, 1))))