Fungrim home page

Fungrim entry: 02e3d2

zeax+bdx=ebaza\int_{z}^{\infty} {e}^{-a x + b} \, dx = \frac{{e}^{b - a z}}{a}
Assumptions:aCandbCandzCandRe ⁣(a)>0a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(a\right) \gt 0
TeX:
\int_{z}^{\infty} {e}^{-a x + b} \, dx = \frac{{e}^{b - a z}}{a}

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(a\right) \gt 0
Definitions:
Fungrim symbol Notation Short description
Expez{e}^{z} Exponential function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Source code for this entry:
Entry(ID("02e3d2"),
    Formula(Equal(Integral(Exp(Add(Neg(Mul(a, x)), b)), Tuple(x, z, Infinity)), Div(Exp(Sub(b, Mul(a, z))), a))),
    Variables(a, b, z),
    Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Greater(Re(a), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC