Assumptions:
TeX:
\int_{z}^{\infty} {e}^{-a x + b} \, dx = \frac{{e}^{b - a z}}{a} a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(a\right) \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("02e3d2"), Formula(Equal(Integral(Exp(Add(Neg(Mul(a, x)), b)), Tuple(x, z, Infinity)), Div(Exp(Sub(b, Mul(a, z))), a))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Greater(Re(a), 0))))