Fungrim home page

0.107653919226484576615323445091

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
0.107653919226484576615323445091HalphenConstant     [e2bfdb f5e0b0 831ea4 d0993b 5c1e44 c26bc9 9758ac 6161c7 06c468 31adf6]
UniqueZero(Brackets(JacobiTheta(2, 0, Div(Log(Neg(x)), Mul(Mul(2, Pi), ConstI)), 2)), ForElement(x, OpenInterval(0, 1)))     [06c468]
UniqueZero(Add(Neg(Div(1, 8)), Sum(Div(Mul(n, Pow(x, n)), Sub(1, Pow(Neg(x), n))), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1)))     [9758ac]
UniqueZero(Brackets(Sum(Mul(Pow(Add(Mul(2, n), 1), 2), Pow(Neg(x), Div(Mul(n, Add(n, 1)), 2))), For(n, 0, Infinity))), ForElement(x, OpenInterval(0, 1)))     [31adf6]
UniqueZero(Add(Neg(Div(1, 8)), Sum(Mul(Abs(DivisorSum(Mul(Pow(-1, d), d), For(d, n))), Pow(x, n)), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1)))     [831ea4]
Where(Exp(Neg(Div(Mul(Pi, EllipticK(Sub(1, c))), EllipticK(c)))), Equal(c, UniqueZero(Sub(EllipticK(m), Mul(2, EllipticE(m))), ForElement(m, OpenInterval(0, 1)))))     [c26bc9]
Where(SequenceLimit(Pow(Subscript(lamda, n), Div(1, n)), For(n, Infinity)), Equal(R, Set(r, ForElement(r, RationalFunctions(RR, t)), LessEqual(RationalFunctionDegree(r), Tuple(n, n)))), Equal(Subscript(lamda, n), Infimum(Supremum(Abs(Sub(Exp(x), r(x))), ForElement(x, OpenClosedInterval(Neg(Infinity), 0))), ForElement(r, R))))     [5c1e44]
10 (#110)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC