Assumptions:
TeX:
z \left({n}^{2} + 5 n + 6\right) a_{n + 3} + \left({n}^{2} + 5 n + 6\right) a_{n + 2} + z a_{n + 1} + a_{n} = 0\; \text{ where } a_{n} = \frac{{\operatorname{sinc}}^{(n)}(z)}{n !} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
ComplexDerivative | Complex derivative | |
Sinc | Sinc function | |
Factorial | Factorial | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("ff5e82"), Formula(Where(Equal(Add(Add(Add(Mul(Mul(z, Add(Add(Pow(n, 2), Mul(5, n)), 6)), a_(Add(n, 3))), Mul(Add(Add(Pow(n, 2), Mul(5, n)), 6), a_(Add(n, 2)))), Mul(z, a_(Add(n, 1)))), a_(n)), 0), Equal(a_(n), Div(ComplexDerivative(Sinc(z), For(z, z, n)), Factorial(n))))), Variables(z, n), Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)))))