Assumptions:
TeX:
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = \frac{{\left(-z\right)}^{-a}}{\Gamma\!\left(b - a\right)} U^{*}\!\left(a, b, z\right) + \frac{{z}^{a - b} {e}^{z}}{\Gamma\!\left(a\right)} U^{*}\!\left(b - a, b, -z\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1Regularized | Regularized Kummer confluent hypergeometric function | |
Pow | Power | |
GammaFunction | Gamma function | |
HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
Exp | Exponential function | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("f7f84e"), Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Add(Mul(Div(Pow(Neg(z), Neg(a)), GammaFunction(Sub(b, a))), HypergeometricUStar(a, b, z)), Mul(Div(Mul(Pow(z, Sub(a, b)), Exp(z)), GammaFunction(a)), HypergeometricUStar(Sub(b, a), b, Neg(z)))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Unequal(z, 0))))