Assumptions:
TeX:
\frac{z {e}^{x z}}{{e}^{z} - 1} = \sum_{n=0}^{\infty} B_{n}\!\left(x\right) \frac{{z}^{n}}{n !}
x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt 2 \pi \,\mathbin{\operatorname{and}}\, z \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Exp | Exponential function | |
| BernoulliPolynomial | Bernoulli polynomial | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| ConstPi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("f79ff0"),
Formula(Equal(Div(Mul(z, Exp(Mul(x, z))), Sub(Exp(z), 1)), Sum(Mul(BernoulliPolynomial(n, x), Div(Pow(z, n), Factorial(n))), Tuple(n, 0, Infinity)))),
Variables(z, x),
Assumptions(And(Element(x, CC), Element(z, CC), Less(Abs(z), Mul(2, ConstPi)), Unequal(z, 0))))