Assumptions:
TeX:
\left|\operatorname{sinc}\!\left({e}^{i \theta} \infty\right)\right| = \lim_{x \to \infty} \left|\operatorname{sinc}\!\left({e}^{i \theta} x\right)\right| = \begin{cases} 0, & {e}^{i \theta} \in \left\{-1, 1\right\}\\\infty, & \text{otherwise}\\ \end{cases}
\theta \in \mathbb{R}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| Sinc | Sinc function | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| RealLimit | Limiting value, real variable | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("f4fd7d"),
Formula(Equal(Abs(Sinc(Mul(Exp(Mul(ConstI, theta)), Infinity))), RealLimit(Abs(Sinc(Mul(Exp(Mul(ConstI, theta)), x))), For(x, Infinity)), Cases(Tuple(0, Element(Exp(Mul(ConstI, theta)), Set(-1, 1))), Tuple(Infinity, Otherwise)))),
Variables(theta),
Assumptions(Element(theta, RR)))