Fungrim home page

Fungrim entry: d6c29e

absinc(x)dx=Si(b)Si(a)\int_{a}^{b} \operatorname{sinc}(x) \, dx = \operatorname{Si}(b) - \operatorname{Si}(a)
Assumptions:aC  and  bCa \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
TeX:
\int_{a}^{b} \operatorname{sinc}(x) \, dx = \operatorname{Si}(b) - \operatorname{Si}(a)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Sincsinc(z)\operatorname{sinc}(z) Sinc function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("d6c29e"),
    Formula(Equal(Integral(Sinc(x), For(x, a, b)), Sub(SinIntegral(b), SinIntegral(a)))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC