Assumptions:
TeX:
\left\{ W_{k}\!\left(z\right) : z \in \mathbb{C} \setminus \left\{0\right\} \right\} = \left\{ x + y i : x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left(\left(2 k - 2 < u < 2 k \;\mathbin{\operatorname{and}}\; t < v\right) \;\mathbin{\operatorname{or}}\; \left(2 k - 1 \le u \le 2 k\right) \;\mathbin{\operatorname{or}}\; \left(2 k - 1 < u < 2 k + 1 \;\mathbin{\operatorname{and}}\; t \ge v\right)\right)\; \text{ where } t = x \operatorname{sinc}(y),\;v = -\cos(y),\;u = \frac{y}{\pi} \right\} k \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LambertW | Lambert W-function | |
CC | Complex numbers | |
ConstI | Imaginary unit | |
RR | Real numbers | |
Sinc | Sinc function | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("d5917b"), Formula(Equal(Set(LambertW(z, k), ForElement(z, SetMinus(CC, Set(0)))), Set(Add(x, Mul(y, ConstI)), For(Tuple(x, y)), Where(And(Element(x, RR), Element(y, RR), Or(And(Less(Sub(Mul(2, k), 2), u, Mul(2, k)), Less(t, v)), Parentheses(LessEqual(Sub(Mul(2, k), 1), u, Mul(2, k))), And(Less(Sub(Mul(2, k), 1), u, Add(Mul(2, k), 1)), GreaterEqual(t, v)))), Equal(t, Mul(x, Sinc(y))), Equal(v, Neg(Cos(y))), Equal(u, Div(y, Pi)))))), Variables(k), Assumptions(Element(k, ZZGreaterEqual(1))))