Assumptions:
TeX:
U^{*}\!\left(a, b, z\right) = \sum_{k=0}^{n - 1} \frac{\left(a\right)_{k} \left(a - b + 1\right)_{k}}{k ! {\left(-z\right)}^{k}} + R_{n}\!\left(a,b,z\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \ne 0 \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
RisingFactorial | Rising factorial | |
Factorial | Factorial | |
Pow | Power | |
HypergeometricUStarRemainder | Error term in asymptotic expansion of Tricomi confluent hypergeometric function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("d1b3b5"), Formula(Equal(HypergeometricUStar(a, b, z), Add(Sum(Div(Mul(RisingFactorial(a, k), RisingFactorial(Add(Sub(a, b), 1), k)), Mul(Factorial(k), Pow(Neg(z), k))), Tuple(k, 0, Sub(n, 1))), HypergeometricUStarRemainder(n, a, b, z)))), Variables(a, b, z, n), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Unequal(z, 0), Element(n, ZZGreaterEqual(0)))))