Fungrim home page

Fungrim entry: c6e6b2

zsinc(z)+2sinc(z)+zsinc(z)=0z \operatorname{sinc}''(z) + 2 \operatorname{sinc}'(z) + z \operatorname{sinc}(z) = 0
Assumptions:zCz \in \mathbb{C}
z \operatorname{sinc}''(z) + 2 \operatorname{sinc}'(z) + z \operatorname{sinc}(z) = 0

z \in \mathbb{C}
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Sincsinc(z)\operatorname{sinc}(z) Sinc function
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Add(Add(Mul(z, ComplexDerivative(Sinc(z), For(z, z, 2))), Mul(2, ComplexDerivative(Sinc(z), For(z, z)))), Mul(z, Sinc(z))), 0)),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC