Fungrim home page

Fungrim entry: c33e2b

(B2npP,(p1)2n1p)Z\left(B_{2 n} \prod_{p \in \mathbb{P},\,\left(p - 1\right) \mid 2 n} \frac{1}{p}\right) \in \mathbb{Z}
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
TeX:
\left(B_{2 n} \prod_{p \in \mathbb{P},\,\left(p - 1\right) \mid 2 n} \frac{1}{p}\right) \in \mathbb{Z}

n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
BernoulliBBnB_{n} Bernoulli number
PPP\mathbb{P} Prime numbers
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("c33e2b"),
    Formula(Element(Parentheses(Mul(BernoulliB(Mul(2, n)), ProductCondition(Div(1, p), p, And(Element(p, PP), Divides(Parentheses(Sub(p, 1)), Mul(2, n)))))), ZZ)),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC