Assumptions:
TeX:
\operatorname{sinc}\!\left(a z\right) = \frac{1}{2 a} \int_{-a}^{a} {e}^{i z x} \, dx z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sinc | Sinc function | |
Integral | Integral | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("b1d132"), Formula(Equal(Sinc(Mul(a, z)), Mul(Div(1, Mul(2, a)), Integral(Exp(Mul(Mul(ConstI, z), x)), For(x, Neg(a), a))))), Variables(a, z), Assumptions(And(Element(z, CC), Element(a, CC), NotEqual(a, 0))))