Fungrim home page

Fungrim entry: aa15f0

zf(z)+2f(z)+A2zf(z)=0   where f(z)=C1sinc ⁣(Az)+C2cos ⁣(Az)zz f''(z) + 2 f'(z) + {A}^{2} z f(z) = 0\; \text{ where } f(z) = {C}_{1} \operatorname{sinc}\!\left(A z\right) + {C}_{2} \frac{\cos\!\left(A z\right)}{z}
Assumptions:zC  and  z0  and  AC  and  C1C  and  C2Cz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; A \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {C}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {C}_{2} \in \mathbb{C}
TeX:
z f''(z) + 2 f'(z) + {A}^{2} z f(z) = 0\; \text{ where } f(z) = {C}_{1} \operatorname{sinc}\!\left(A z\right) + {C}_{2} \frac{\cos\!\left(A z\right)}{z}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; A \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {C}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {C}_{2} \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Powab{a}^{b} Power
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Coscos(z)\cos(z) Cosine
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("aa15f0"),
    Formula(Where(Equal(Add(Add(Mul(z, ComplexDerivative(f(z), For(z, z, 2))), Mul(2, ComplexDerivative(f(z), For(z, z)))), Mul(Mul(Pow(A, 2), z), f(z))), 0), Equal(f(z), Add(Mul(Subscript(C, 1), Sinc(Mul(A, z))), Mul(Subscript(C, 2), Div(Cos(Mul(A, z)), z)))))),
    Variables(C, A, z),
    Assumptions(And(Element(z, CC), NotEqual(z, 0), Element(A, CC), Element(Subscript(C, 1), CC), Element(Subscript(C, 2), CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC