Assumptions:
TeX:
z f''(z) + 2 f'(z) + {A}^{2} z f(z) = 0\; \text{ where } f(z) = {C}_{1} \operatorname{sinc}\!\left(A z\right) + {C}_{2} \frac{\cos\!\left(A z\right)}{z}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; A \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {C}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {C}_{2} \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| Pow | Power | |
| Sinc | Sinc function | |
| Cos | Cosine | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("aa15f0"),
Formula(Where(Equal(Add(Add(Mul(z, ComplexDerivative(f(z), For(z, z, 2))), Mul(2, ComplexDerivative(f(z), For(z, z)))), Mul(Mul(Pow(A, 2), z), f(z))), 0), Equal(f(z), Add(Mul(Subscript(C, 1), Sinc(Mul(A, z))), Mul(Subscript(C, 2), Div(Cos(Mul(A, z)), z)))))),
Variables(C, A, z),
Assumptions(And(Element(z, CC), NotEqual(z, 0), Element(A, CC), Element(Subscript(C, 1), CC), Element(Subscript(C, 2), CC))))