Fungrim home page

Fungrim entry: a934d1

sinc(x)<asinh(x)x\left|\operatorname{sinc}(x)\right| < \frac{\operatorname{asinh}(x)}{x}
Assumptions:xR  and  x0x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ne 0
TeX:
\left|\operatorname{sinc}(x)\right| < \frac{\operatorname{asinh}(x)}{x}

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ne 0
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Sincsinc(z)\operatorname{sinc}(z) Sinc function
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("a934d1"),
    Formula(Less(Abs(Sinc(x)), Div(Asinh(x), x))),
    Variables(x),
    Assumptions(And(Element(x, RR), NotEqual(x, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC