Assumptions:
TeX:
\operatorname{sinc}''(z) = \begin{cases} \left(\frac{2}{{z}^{3}} - \frac{1}{z}\right) \sin(z) - \frac{2 \cos(z)}{{z}^{2}}, & z \ne 0\\-\frac{1}{3}, & z = 0\\ \end{cases}
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| Sinc | Sinc function | |
| Pow | Power | |
| Sin | Sine | |
| Cos | Cosine | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("90c66a"),
Formula(Equal(ComplexDerivative(Sinc(z), For(z, z, 2)), Cases(Tuple(Sub(Mul(Sub(Div(2, Pow(z, 3)), Div(1, z)), Sin(z)), Div(Mul(2, Cos(z)), Pow(z, 2))), NotEqual(z, 0)), Tuple(Neg(Div(1, 3)), Equal(z, 0))))),
Variables(z),
Assumptions(Element(z, CC)))