Assumptions:
TeX:
\int_{a}^{b} B_{n}\!\left(t\right) \, dt = \frac{B_{n + 1}\!\left(b\right) - B_{n + 1}\!\left(a\right)}{n + 1}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BernoulliPolynomial | Bernoulli polynomial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("7adfd6"),
Formula(Equal(Integral(BernoulliPolynomial(n, t), Tuple(t, a, b)), Div(Sub(BernoulliPolynomial(Add(n, 1), b), BernoulliPolynomial(Add(n, 1), a)), Add(n, 1)))),
Variables(n, a, b),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Element(b, CC))))