Assumptions:
TeX:
\int_{0}^{\infty} {e}^{-a {x}^{2}} \operatorname{sinc}(x) \, dx = \frac{\pi}{2} \operatorname{erf}\!\left(\frac{1}{2 \sqrt{a}}\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| Integral | Integral | |
| Exp | Exponential function | |
| Pow | Power | |
| Sinc | Sinc function | |
| Infinity | Positive infinity | |
| Pi | The constant pi (3.14...) | |
| Erf | Error function | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| Re | Real part | 
Source code for this entry:
Entry(ID("78fca3"),
    Formula(Equal(Integral(Mul(Exp(Neg(Mul(a, Pow(x, 2)))), Sinc(x)), For(x, 0, Infinity)), Mul(Div(Pi, 2), Erf(Div(1, Mul(2, Sqrt(a))))))),
    Variables(a),
    Assumptions(And(Element(a, CC), Greater(Re(a), 0))))