Assumptions:
TeX:
\int_{0}^{\infty} {e}^{-a {x}^{2}} \operatorname{sinc}(x) \, dx = \frac{\pi}{2} \operatorname{erf}\!\left(\frac{1}{2 \sqrt{a}}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Exp | Exponential function | |
Pow | Power | |
Sinc | Sinc function | |
Infinity | Positive infinity | |
Pi | The constant pi (3.14...) | |
Erf | Error function | |
Sqrt | Principal square root | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("78fca3"), Formula(Equal(Integral(Mul(Exp(Neg(Mul(a, Pow(x, 2)))), Sinc(x)), For(x, 0, Infinity)), Mul(Div(Pi, 2), Erf(Div(1, Mul(2, Sqrt(a))))))), Variables(a), Assumptions(And(Element(a, CC), Greater(Re(a), 0))))