Assumptions:
TeX:
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = \sum_{k=0}^{\infty} \frac{\left(a\right)_{k}}{\Gamma\!\left(b + k\right)} \frac{{z}^{k}}{k !}
a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric1F1Regularized | Regularized Kummer confluent hypergeometric function | |
| RisingFactorial | Rising factorial | |
| GammaFunction | Gamma function | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("70111e"),
Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Sum(Mul(Div(RisingFactorial(a, k), GammaFunction(Add(b, k))), Div(Pow(z, k), Factorial(k))), Tuple(k, 0, Infinity)))),
Variables(a, b, z),
Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC))))