Assumptions:
TeX:
U\!\left(a, b, z\right) = \frac{\Gamma\!\left(1 - b\right)}{\Gamma\!\left(a - b + 1\right)} \,{}_1F_1\!\left(a, b, z\right) + \frac{\Gamma\!\left(b - 1\right)}{\Gamma\!\left(a\right)} {z}^{1 - b} \,{}_1F_1\!\left(a - b + 1, 2 - b, z\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \ne 0 \,\mathbin{\operatorname{and}}\, b \notin \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricU | Tricomi confluent hypergeometric function | |
GammaFunction | Gamma function | |
Hypergeometric1F1 | Kummer confluent hypergeometric function | |
Pow | Power | |
CC | Complex numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("6cf802"), Formula(Equal(HypergeometricU(a, b, z), Add(Mul(Div(GammaFunction(Sub(1, b)), GammaFunction(Add(Sub(a, b), 1))), Hypergeometric1F1(a, b, z)), Mul(Mul(Div(GammaFunction(Sub(b, 1)), GammaFunction(a)), Pow(z, Sub(1, b))), Hypergeometric1F1(Add(Sub(a, b), 1), Sub(2, b), z))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Unequal(z, 0), NotElement(b, ZZ))))