Fungrim home page

Fungrim entry: 588889

Table of Bn ⁣(x)B_{n}\!\left(x\right) for 0n100 \le n \le 10
nn Bn ⁣(x)B_{n}\!\left(x\right)
01
1x12x - \frac{1}{2}
2x2x+16{x}^{2} - x + \frac{1}{6}
3x332x2+12x{x}^{3} - \frac{3}{2} {x}^{2} + \frac{1}{2} x
4x42x3+x2130{x}^{4} - 2 {x}^{3} + {x}^{2} - \frac{1}{30}
5x552x4+53x316x{x}^{5} - \frac{5}{2} {x}^{4} + \frac{5}{3} {x}^{3} - \frac{1}{6} x
6x63x5+52x412x2+142{x}^{6} - 3 {x}^{5} + \frac{5}{2} {x}^{4} - \frac{1}{2} {x}^{2} + \frac{1}{42}
7x772x6+72x576x3+16x{x}^{7} - \frac{7}{2} {x}^{6} + \frac{7}{2} {x}^{5} - \frac{7}{6} {x}^{3} + \frac{1}{6} x
8x84x7+143x673x4+23x2130{x}^{8} - 4 {x}^{7} + \frac{14}{3} {x}^{6} - \frac{7}{3} {x}^{4} + \frac{2}{3} {x}^{2} - \frac{1}{30}
9x992x8+6x7215x5+2x3310x{x}^{9} - \frac{9}{2} {x}^{8} + 6 {x}^{7} - \frac{21}{5} {x}^{5} + 2 {x}^{3} - \frac{3}{10} x
10x105x9+152x87x6+5x432x2+566{x}^{10} - 5 {x}^{9} + \frac{15}{2} {x}^{8} - 7 {x}^{6} + 5 {x}^{4} - \frac{3}{2} {x}^{2} + \frac{5}{66}
Table data: (n,p)\left(n, p\right) such that Bn ⁣(x)=pB_{n}\!\left(x\right) = p
Assumptions:xCx \in \mathbb{C}
TeX:
x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
BernoulliPolynomialBn ⁣(z)B_{n}\!\left(z\right) Bernoulli polynomial
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("588889"),
    Description("Table of", BernoulliPolynomial(n, x), "for", LessEqual(0, n, 10)),
    Table(TableRelation(Tuple(n, p), Equal(BernoulliPolynomial(n, x), p)), TableHeadings(n, BernoulliPolynomial(n, x)), TableSplit(1), List(Tuple(0, 1), Tuple(1, Sub(x, Div(1, 2))), Tuple(2, Add(Sub(Pow(x, 2), x), Div(1, 6))), Tuple(3, Add(Sub(Pow(x, 3), Mul(Div(3, 2), Pow(x, 2))), Mul(Div(1, 2), x))), Tuple(4, Sub(Add(Sub(Pow(x, 4), Mul(2, Pow(x, 3))), Pow(x, 2)), Div(1, 30))), Tuple(5, Sub(Add(Sub(Pow(x, 5), Mul(Div(5, 2), Pow(x, 4))), Mul(Div(5, 3), Pow(x, 3))), Mul(Div(1, 6), x))), Tuple(6, Add(Sub(Add(Sub(Pow(x, 6), Mul(3, Pow(x, 5))), Mul(Div(5, 2), Pow(x, 4))), Mul(Div(1, 2), Pow(x, 2))), Div(1, 42))), Tuple(7, Add(Sub(Add(Sub(Pow(x, 7), Mul(Div(7, 2), Pow(x, 6))), Mul(Div(7, 2), Pow(x, 5))), Mul(Div(7, 6), Pow(x, 3))), Mul(Div(1, 6), x))), Tuple(8, Sub(Add(Sub(Add(Sub(Pow(x, 8), Mul(4, Pow(x, 7))), Mul(Div(14, 3), Pow(x, 6))), Mul(Div(7, 3), Pow(x, 4))), Mul(Div(2, 3), Pow(x, 2))), Div(1, 30))), Tuple(9, Sub(Add(Sub(Add(Sub(Pow(x, 9), Mul(Div(9, 2), Pow(x, 8))), Mul(6, Pow(x, 7))), Mul(Div(21, 5), Pow(x, 5))), Mul(2, Pow(x, 3))), Mul(Div(3, 10), x))), Tuple(10, Add(Sub(Add(Sub(Add(Sub(Pow(x, 10), Mul(5, Pow(x, 9))), Mul(Div(15, 2), Pow(x, 8))), Mul(7, Pow(x, 6))), Mul(5, Pow(x, 4))), Mul(Div(3, 2), Pow(x, 2))), Div(5, 66))))),
    Variables(x),
    Assumptions(Element(x, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC