Assumptions:
TeX:
B_{n}\!\left(x\right) = \sum_{k=0}^{n} {n \choose k} B_{n - k} {x}^{k}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BernoulliPolynomial | Bernoulli polynomial | |
| Binomial | Binomial coefficient | |
| BernoulliB | Bernoulli number | |
| Pow | Power | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("555e10"),
Formula(Equal(BernoulliPolynomial(n, x), Sum(Mul(Mul(Binomial(n, k), BernoulliB(Sub(n, k))), Pow(x, k)), Tuple(k, 0, n)))),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))