Assumptions:
TeX:
\frac{z}{{e}^{z} - 1} = \sum_{n=0}^{\infty} B_{n} \frac{{z}^{n}}{n !}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt 2 \pi \,\mathbin{\operatorname{and}}\, z \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Exp | Exponential function | |
| BernoulliB | Bernoulli number | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| ConstPi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("522b04"),
Formula(Equal(Div(z, Sub(Exp(z), 1)), Sum(Mul(BernoulliB(n), Div(Pow(z, n), Factorial(n))), Tuple(n, 0, Infinity)))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), Mul(2, ConstPi)), Unequal(z, 0))))