Assumptions:
TeX:
\,{}_0F_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\left(a\right)_{k}} \frac{{z}^{k}}{k !}
a \in \mathbb{C} \setminus \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric0F1 | Confluent hypergeometric limit function | |
| RisingFactorial | Rising factorial | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("4c41ad"),
Formula(Equal(Hypergeometric0F1(a, z), Sum(Mul(Div(1, RisingFactorial(a, k)), Div(Pow(z, k), Factorial(k))), Tuple(k, 0, Infinity)))),
Variables(a, z),
Assumptions(And(Element(a, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))