Assumptions:
TeX:
\sum_{k=1}^{m} {k}^{n} = \frac{B_{n + 1}\!\left(m + 1\right) - B_{m + 1}}{m + 1}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| BernoulliPolynomial | Bernoulli polynomial | |
| BernoulliB | Bernoulli number | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4aab8a"),
Formula(Equal(Sum(Pow(k, n), Tuple(k, 1, m)), Div(Sub(BernoulliPolynomial(Add(n, 1), Add(m, 1)), BernoulliB(Add(m, 1))), Add(m, 1)))),
Variables(n, m),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))