Assumptions:
TeX:
\frac{1}{\operatorname{sinc}\!\left(\frac{\pi}{z}\right)} = \int_{0}^{\infty} \frac{1}{{x}^{z} + 1} \, dx
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sinc | Sinc function | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("45f05f"),
Formula(Equal(Div(1, Sinc(Div(Pi, z))), Integral(Div(1, Add(Pow(x, z), 1)), For(x, 0, Infinity)))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 1))))