Fungrim home page

Fungrim entry: 38dc04

0eaxsinc(x)dx=acot(a)\int_{0}^{\infty} {e}^{-a x} \operatorname{sinc}(x) \, dx = \operatorname{acot}(a)
Assumptions:aC  and  Re(a)>0a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
\int_{0}^{\infty} {e}^{-a x} \operatorname{sinc}(x) \, dx = \operatorname{acot}(a)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Expez{e}^{z} Exponential function
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
    Formula(Equal(Integral(Mul(Exp(Neg(Mul(a, x))), Sinc(x)), For(x, 0, Infinity)), Acot(a))),
    Assumptions(And(Element(a, CC), Greater(Re(a), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC