Assumptions:
TeX:
\,{}_0F_1\!\left(a, z\right) = {e}^{-2 \sqrt{z}} \,{}_1F_1\!\left(a - \frac{1}{2}, 2 a - 1, 4 \sqrt{z}\right)
a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, a \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric0F1 | Confluent hypergeometric limit function | |
| Exp | Exponential function | |
| Sqrt | Principal square root | |
| Hypergeometric1F1 | Kummer confluent hypergeometric function | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("2df3e3"),
Formula(Equal(Hypergeometric0F1(a, z), Mul(Exp(Neg(Mul(2, Sqrt(z)))), Hypergeometric1F1(Sub(a, Div(1, 2)), Sub(Mul(2, a), 1), Mul(4, Sqrt(z)))))),
Variables(a, z),
Assumptions(And(Element(a, CC), Element(z, CC), NotElement(a, ZZLessEqual(0)))))