Assumptions:
TeX:
\int_{-\infty}^{\infty} {e}^{i a x} \operatorname{sinc}(x) \, dx = \int_{-\infty}^{\infty} \cos\!\left(a x\right) \operatorname{sinc}(x) \, dx = \begin{cases} \pi, & \left|a\right| < 1\\\frac{\pi}{2}, & \left|a\right| = 1\\0, & \left|a\right| > 1\\ \end{cases}
a \in \mathbb{R}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| Sinc | Sinc function | |
| Infinity | Positive infinity | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Abs | Absolute value | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("2a69ce"),
Formula(Equal(Integral(Mul(Exp(Mul(Mul(ConstI, a), x)), Sinc(x)), For(x, Neg(Infinity), Infinity)), Integral(Mul(Cos(Mul(a, x)), Sinc(x)), For(x, Neg(Infinity), Infinity)), Cases(Tuple(Pi, Less(Abs(a), 1)), Tuple(Div(Pi, 2), Equal(Abs(a), 1)), Tuple(0, Greater(Abs(a), 1))))),
Variables(a),
Assumptions(Element(a, RR)))