Assumptions:
TeX:
W_{k}\!\left(z\right) = \operatorname{L_1} - \operatorname{L_2} + \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \frac{{\left(-1\right)}^{n}}{m !} \left[{n + m \atop n + 1}\right] {\sigma}^{n} {\tau}^{m}\; \text{ where } \operatorname{L_1} = \log(z) + 2 \pi i k,\;\operatorname{L_2} = \log(\operatorname{L_1}),\;\sigma = \frac{1}{\operatorname{L_1}},\;\tau = \frac{\operatorname{L_2}}{\operatorname{L_1}} k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left|\sigma\right| < \frac{1}{4} \;\mathbin{\operatorname{and}}\; \left|\tau\right| < \frac{1}{4} \;\mathbin{\operatorname{and}}\; \left(k \ne 0 \;\mathbin{\operatorname{or}}\; \left|z\right| > 1\right)\; \text{ where } \operatorname{L_1} = \log(z) + 2 \pi i k,\;\operatorname{L_2} = \log(\operatorname{L_1}),\;\sigma = \frac{1}{\operatorname{L_1}},\;\tau = \frac{\operatorname{L_2}}{\operatorname{L_1}}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LambertW | Lambert W-function | |
Sum | Sum | |
Pow | Power | |
Factorial | Factorial | |
StirlingCycle | Unsigned Stirling number of the first kind | |
Infinity | Positive infinity | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
ZZ | Integers | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("1fc63b"), Formula(Equal(LambertW(z, k), Where(Add(Sub(L_1, L_2), Sum(Sum(Mul(Mul(Mul(Div(Pow(-1, n), Factorial(m)), StirlingCycle(Add(n, m), Add(n, 1))), Pow(sigma, n)), Pow(tau, m)), For(m, 1, Infinity)), For(n, 0, Infinity))), Equal(L_1, Add(Log(z), Mul(Mul(Mul(2, Pi), ConstI), k))), Equal(L_2, Log(L_1)), Equal(sigma, Div(1, L_1)), Equal(tau, Div(L_2, L_1))))), Variables(k, z), Assumptions(Where(And(Element(k, ZZ), Element(z, SetMinus(CC, Set(0))), Less(Abs(sigma), Div(1, 4)), Less(Abs(tau), Div(1, 4)), Or(NotEqual(k, 0), Greater(Abs(z), 1))), Equal(L_1, Add(Log(z), Mul(Mul(Mul(2, Pi), ConstI), k))), Equal(L_2, Log(L_1)), Equal(sigma, Div(1, L_1)), Equal(tau, Div(L_2, L_1)))))