Assumptions:
TeX:
{\operatorname{sinc}}^{(n)}(0) = \begin{cases} {\left(-1\right)}^{\left\lfloor n / 2 \right\rfloor} \frac{1}{n + 1}, & n \text{ even}\\0, & n \text{ odd}\\ \end{cases} n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
Sinc | Sinc function | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("1c3766"), Formula(Equal(ComplexDerivative(Sinc(z), For(z, 0, n)), Cases(Tuple(Mul(Pow(-1, Floor(Div(n, 2))), Div(1, Add(n, 1))), Even(n)), Tuple(0, Odd(n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))