Assumptions:
TeX:
U\!\left(a, n, z\right) = \lim_{b \to n} \frac{\Gamma\!\left(1 - b\right)}{\Gamma\!\left(a - b + 1\right)} \,{}_1F_1\!\left(a, b, z\right) + \frac{\Gamma\!\left(b - 1\right)}{\Gamma\!\left(a\right)} {z}^{1 - b} \,{}_1F_1\!\left(a - b + 1, 2 - b, z\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HypergeometricU | Tricomi confluent hypergeometric function | |
ComplexLimit | Limiting value, complex variable | |
GammaFunction | Gamma function | |
Hypergeometric1F1 | Kummer confluent hypergeometric function | |
Pow | Power | |
CC | Complex numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("18ef23"), Formula(Equal(HypergeometricU(a, n, z), ComplexLimit(Add(Mul(Div(GammaFunction(Sub(1, b)), GammaFunction(Add(Sub(a, b), 1))), Hypergeometric1F1(a, b, z)), Mul(Mul(Div(GammaFunction(Sub(b, 1)), GammaFunction(a)), Pow(z, Sub(1, b))), Hypergeometric1F1(Add(Sub(a, b), 1), Sub(2, b), z))), b, n))), Variables(a, n, z), Assumptions(And(Element(a, CC), Element(n, ZZ), Element(z, CC), Unequal(z, 0))))