Assumptions:
TeX:
\int_{0}^{\infty} \operatorname{sinc}^{n}\!\left(x\right) \, dx = \frac{\pi}{{2}^{n} \left(n - 1\right)!} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {\left(-1\right)}^{k} {n \choose k} {\left(n - 2 k\right)}^{n - 1} n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Pow | Power | |
Sinc | Sinc function | |
Infinity | Positive infinity | |
Pi | The constant pi (3.14...) | |
Factorial | Factorial | |
Sum | Sum | |
Binomial | Binomial coefficient | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("1596d2"), Formula(Equal(Integral(Pow(Sinc(x), n), For(x, 0, Infinity)), Mul(Div(Pi, Mul(Pow(2, n), Factorial(Sub(n, 1)))), Sum(Mul(Mul(Pow(-1, k), Binomial(n, k)), Pow(Sub(n, Mul(2, k)), Sub(n, 1))), For(k, 0, Floor(Div(n, 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))