Fungrim home page

Fungrim entry: 122e3d

0zsinc(x)dx=Si(z)\int_{0}^{z} \operatorname{sinc}(x) \, dx = \operatorname{Si}(z)
Assumptions:zCz \in \mathbb{C}
TeX:
\int_{0}^{z} \operatorname{sinc}(x) \, dx = \operatorname{Si}(z)

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Sincsinc(z)\operatorname{sinc}(z) Sinc function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("122e3d"),
    Formula(Equal(Integral(Sinc(x), For(x, 0, z)), SinIntegral(z))),
    Variables(z),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC