Assumptions:
TeX:
\int_{-\infty}^{\infty} \operatorname{sinc}\!\left(a x\right) \operatorname{sinc}\!\left(b x\right) \, dx = \frac{\pi}{2} \frac{\left|a + b\right| - \left|a - b\right|}{a b}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; b \in \mathbb{R} \;\mathbin{\operatorname{and}}\; a \ne 0 \;\mathbin{\operatorname{and}}\; b \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Sinc | Sinc function | |
| Infinity | Positive infinity | |
| Pi | The constant pi (3.14...) | |
| Abs | Absolute value | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("108daa"),
Formula(Equal(Integral(Mul(Sinc(Mul(a, x)), Sinc(Mul(b, x))), For(x, Neg(Infinity), Infinity)), Mul(Div(Pi, 2), Div(Sub(Abs(Add(a, b)), Abs(Sub(a, b))), Mul(a, b))))),
Variables(a, b),
Assumptions(And(Element(a, RR), Element(b, RR), NotEqual(a, 0), NotEqual(b, 0))))