Assumptions:
References:
- https://www.carma.newcastle.edu.au/resources/jon/sinc-sums.pdf
TeX:
\left(\begin{cases} \sum_{k=0}^{N} {a}_{k} < 2 \pi, & N = 0\\\sum_{k=0}^{N} {a}_{k} \le 2 \pi, & N \ge 1\\ \end{cases}\right) \;\implies\; \left(\sum_{n=1}^{\infty} \prod_{k=0}^{N} \operatorname{sinc}\!\left({a}_{k} n\right) = -\frac{1}{2} + \int_{0}^{\infty} \prod_{k=0}^{N} \operatorname{sinc}\!\left({a}_{k} x\right) \, dx\right) N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; {a}_{k} \in \left(0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pi | The constant pi (3.14...) | |
Product | Product | |
Sinc | Sinc function | |
Infinity | Positive infinity | |
Integral | Integral | |
ZZGreaterEqual | Integers greater than or equal to n | |
OpenInterval | Open interval |
Source code for this entry:
Entry(ID("005478"), Formula(Implies(Cases(Tuple(Less(Sum(Subscript(a, k), For(k, 0, N)), Mul(2, Pi)), Equal(N, 0)), Tuple(LessEqual(Sum(Subscript(a, k), For(k, 0, N)), Mul(2, Pi)), GreaterEqual(N, 1))), Equal(Sum(Product(Sinc(Mul(Subscript(a, k), n)), For(k, 0, N)), For(n, 1, Infinity)), Add(Neg(Div(1, 2)), Integral(Product(Sinc(Mul(Subscript(a, k), x)), For(k, 0, N)), For(x, 0, Infinity)))))), Variables(N, a), Assumptions(And(Element(N, ZZGreaterEqual(0)), Element(Subscript(a, k), OpenInterval(0, Infinity)))), References("https://www.carma.newcastle.edu.au/resources/jon/sinc-sums.pdf"))