Fungrim home page

Weierstrass elliptic functions

Table of contents: Complex lattices - Series and product representations - Derivatives - Theta function representations - Symmetries - Periodicity - Analytic properties

f7a534
Symbol: WeierstrassP  ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
69be32
Symbol: WeierstrassZeta ζ ⁣(z,τ)\zeta\!\left(z, \tau\right) Weierstrass zeta function
5f3210
Symbol: WeierstrassSigma σ ⁣(z,τ)\sigma\!\left(z, \tau\right) Weierstrass sigma function

Complex lattices

3c1659
Symbol: Lattice Λ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
d530b1
Λ(a,b)={am+bn:mZandnZ}\Lambda_{(a, b)} = \left\{ a m + b n : m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \right\}

Series and product representations

58d67b
 ⁣(z,τ)=1z2+m2+n201(z+m+nτ)21(m+nτ)2\wp\!\left(z, \tau\right) = \frac{1}{{z}^{2}} + \sum_{{m}^{2} + {n}^{2} \ne 0} \frac{1}{{\left(z + m + n \tau\right)}^{2}} - \frac{1}{{\left(m + n \tau\right)}^{2}}
b10ca7
ζ ⁣(z,τ)=1z+m2+n201zmnτ+1m+nτ+z(m+nτ)2\zeta\!\left(z, \tau\right) = \frac{1}{z} + \sum_{{m}^{2} + {n}^{2} \ne 0} \frac{1}{z - m - n \tau} + \frac{1}{m + n \tau} + \frac{z}{{\left(m + n \tau\right)}^{2}}
7c4457
σ ⁣(z,τ)=zm2+n20(1zm+nτ)exp ⁣(zm+nτ+z22(m+nτ)2)\sigma\!\left(z, \tau\right) = z \prod_{{m}^{2} + {n}^{2} \ne 0} \left(1 - \frac{z}{m + n \tau}\right) \exp\!\left(\frac{z}{m + n \tau} + \frac{{z}^{2}}{2 {\left(m + n \tau\right)}^{2}}\right)

Derivatives

e677fb
ddzζ ⁣(z,τ)= ⁣(z,τ)\frac{d}{d z}\, \zeta\!\left(z, \tau\right) = -\wp\!\left(z, \tau\right)
0e649f
ddzσ ⁣(z,τ)=ζ ⁣(z,τ)σ ⁣(z,τ)\frac{d}{d z}\, \sigma\!\left(z, \tau\right) = \zeta\!\left(z, \tau\right) \sigma\!\left(z, \tau\right)

Theta function representations

af0dfc
 ⁣(z,τ)=(πθ2 ⁣(0,τ)θ3 ⁣(0,τ)θ4 ⁣(z,τ)θ1 ⁣(z,τ))2π23((θ2 ⁣(0,τ))4+(θ3 ⁣(0,τ))4)\wp\!\left(z, \tau\right) = {\left(\pi \theta_2\!\left(0, \tau\right) \theta_3\!\left(0, \tau\right) \frac{\theta_4\!\left(z, \tau\right)}{\theta_1\!\left(z, \tau\right)}\right)}^{2} - \frac{{\pi}^{2}}{3} \left({\left(\theta_2\!\left(0, \tau\right)\right)}^{4} + {\left(\theta_3\!\left(0, \tau\right)\right)}^{4}\right)
0207dc
ζ ⁣(z,τ)=z3[d3dz3θ1 ⁣(z,τ)]z=0[ddzθ1 ⁣(z,τ)]z=0+ddzθ1 ⁣(z,τ)θ1 ⁣(z,τ)\zeta\!\left(z, \tau\right) = -\frac{z}{3} \frac{\left[ \frac{d^{3}}{{d z}^{3}} \theta_1\!\left(z, \tau\right) \right]_{z = 0}}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}} + \frac{\frac{d}{d z}\, \theta_1\!\left(z, \tau\right)}{\theta_1\!\left(z, \tau\right)}
b96c9d
σ ⁣(z,τ)=exp ⁣(z26[d3dz3θ1 ⁣(z,τ)]z=0[ddzθ1 ⁣(z,τ)]z=0)θ1 ⁣(z,τ)[ddzθ1 ⁣(z,τ)]z=0\sigma\!\left(z, \tau\right) = \exp\!\left(-\frac{{z}^{2}}{6} \frac{\left[ \frac{d^{3}}{{d z}^{3}} \theta_1\!\left(z, \tau\right) \right]_{z = 0}}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}}\right) \frac{\theta_1\!\left(z, \tau\right)}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}}

Symmetries

12a9e8
 ⁣(z,τ)= ⁣(z,τ)\wp\!\left(-z, \tau\right) = \wp\!\left(z, \tau\right)
72eb69
ζ ⁣(z,τ)=ζ ⁣(z,τ)\zeta\!\left(-z, \tau\right) = -\zeta\!\left(z, \tau\right)
23beb5
σ ⁣(z,τ)=σ ⁣(z,τ)\sigma\!\left(-z, \tau\right) = -\sigma\!\left(z, \tau\right)

Periodicity

a95b7e
 ⁣(z+m+nτ,τ)= ⁣(z,τ)\wp\!\left(z + m + n \tau, \tau\right) = \wp\!\left(z, \tau\right)
ffcc0f
ζ ⁣(z+1,τ)=ζ ⁣(z,τ)+ζ ⁣(12,τ)\zeta\!\left(z + 1, \tau\right) = \zeta\!\left(z, \tau\right) + \zeta\!\left(\frac{1}{2}, \tau\right)
a0c85d
ζ ⁣(z+τ,τ)=ζ ⁣(z,τ)+ζ ⁣(τ2,τ)\zeta\!\left(z + \tau, \tau\right) = \zeta\!\left(z, \tau\right) + \zeta\!\left(\frac{\tau}{2}, \tau\right)
35403b
σ ⁣(z+1,τ)=exp ⁣(2(z+12)ζ ⁣(12,τ))σ ⁣(z,τ)\sigma\!\left(z + 1, \tau\right) = -\exp\!\left(2 \left(z + \frac{1}{2}\right) \zeta\!\left(\frac{1}{2}, \tau\right)\right) \sigma\!\left(z, \tau\right)
de9f42
σ ⁣(z+τ,τ)=exp ⁣(2(z+τ2)ζ ⁣(τ2,τ))σ ⁣(z,τ)\sigma\!\left(z + \tau, \tau\right) = -\exp\!\left(2 \left(z + \frac{\tau}{2}\right) \zeta\!\left(\frac{\tau}{2}, \tau\right)\right) \sigma\!\left(z, \tau\right)

Analytic properties

ae2c5d
Poles ⁣( ⁣(z,τ),z,C)=Λ(1,τ)\operatorname{Poles}\!\left(\wp\!\left(z, \tau\right), z, \mathbb{C}\right) = \Lambda_{(1, \tau)}
6021ba
Poles ⁣(ζ ⁣(z,τ),z,C)=Λ(1,τ)\operatorname{Poles}\!\left(\zeta\!\left(z, \tau\right), z, \mathbb{C}\right) = \Lambda_{(1, \tau)}
1da705
zeroszCσ ⁣(z,τ)=Λ(1,τ)\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \sigma\!\left(z, \tau\right) = \Lambda_{(1, \tau)}
c6234b
zeroszC ⁣(z,i)={(m+12)+(n+12)i:mZandnZ}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \wp\!\left(z, i\right) = \left\{ \left(m + \frac{1}{2}\right) + \left(n + \frac{1}{2}\right) i : m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \right\}
69eb9b
HolomorphicDomain ⁣( ⁣(z,τ),z,C)=CΛ(1,τ)\operatorname{HolomorphicDomain}\!\left(\wp\!\left(z, \tau\right), z, \mathbb{C}\right) = \mathbb{C} \setminus \Lambda_{(1, \tau)}
151e42
HolomorphicDomain ⁣(ζ ⁣(z,τ),z,C)=CΛ(1,τ)\operatorname{HolomorphicDomain}\!\left(\zeta\!\left(z, \tau\right), z, \mathbb{C}\right) = \mathbb{C} \setminus \Lambda_{(1, \tau)}
881aee
HolomorphicDomain ⁣(σ ⁣(z,τ),z,C)=C\operatorname{HolomorphicDomain}\!\left(\sigma\!\left(z, \tau\right), z, \mathbb{C}\right) = \mathbb{C}

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-05-23 08:00:13.607731 UTC