Fungrim home page

Modular j-invariant

Table of contents: Modular transformations - Special values - Connection formulas - Analytic properties

70eb98
Symbol: ModularJ j ⁣(τ)j\!\left(\tau\right) Modular j-invariant

Modular transformations

a997f2
j ⁣(τ+1)=j ⁣(τ)j\!\left(\tau + 1\right) = j\!\left(\tau\right)
42a909
j ⁣(1τ)=j ⁣(τ)j\!\left(-\frac{1}{\tau}\right) = j\!\left(\tau\right)
d5f569
j ⁣(aτ+bcτ+d)=j ⁣(τ)j\!\left(\frac{a \tau + b}{c \tau + d}\right) = j\!\left(\tau\right)

Special values

9aa62c
j ⁣(eπi/3)=0j\!\left({e}^{\pi i / 3}\right) = 0
ad228f
j ⁣(i)=1728j\!\left(i\right) = 1728
229c97
j ⁣(2i)=663=287496j\!\left(2 i\right) = {66}^{3} = 287496
1356e4
j ⁣(2i)=203=8000j\!\left(\sqrt{2} i\right) = {20}^{3} = 8000
8be46c
j ⁣(3i)=64(2+3)2(21+203)3j\!\left(3 i\right) = 64 {\left(2 + \sqrt{3}\right)}^{2} {\left(21 + 20 \sqrt{3}\right)}^{3}
3189b9
j ⁣(4i)=27(724+5132)3j\!\left(4 i\right) = 27 {\left(724 + 513 \sqrt{2}\right)}^{3}
29c095
j ⁣(12(1+7i))=153j\!\left(\frac{1}{2} \left(1 + \sqrt{7} i\right)\right) = -{15}^{3}
a498dd
j ⁣(12(1+11i))=323j\!\left(\frac{1}{2} \left(1 + \sqrt{11} i\right)\right) = -{32}^{3}
3ee358
j ⁣(12(1+19i))=963j\!\left(\frac{1}{2} \left(1 + \sqrt{19} i\right)\right) = -{96}^{3}
5b108e
j ⁣(12(1+43i))=9603j\!\left(\frac{1}{2} \left(1 + \sqrt{43} i\right)\right) = -{960}^{3}
951017
j ⁣(12(1+67i))=52803j\!\left(\frac{1}{2} \left(1 + \sqrt{67} i\right)\right) = -{5280}^{3}
1cb24e
j ⁣(12(1+163i))=6403203j\!\left(\frac{1}{2} \left(1 + \sqrt{163} i\right)\right) = -{640320}^{3}

Connection formulas

cedcfc
j ⁣(τ)=32((θ2 ⁣(0,τ))8+(θ3 ⁣(0,τ))8+(θ4 ⁣(0,τ))8)3(θ2 ⁣(0,τ)θ3 ⁣(0,τ)θ4 ⁣(0,τ))8j\!\left(\tau\right) = \frac{32 {\left({\left(\theta_2\!\left(0, \tau\right)\right)}^{8} + {\left(\theta_3\!\left(0, \tau\right)\right)}^{8} + {\left(\theta_4\!\left(0, \tau\right)\right)}^{8}\right)}^{3}}{{\left(\theta_2\!\left(0, \tau\right) \theta_3\!\left(0, \tau\right) \theta_4\!\left(0, \tau\right)\right)}^{8}}
664b4c
j ⁣(τ)=((η ⁣(τ)η ⁣(2τ))8+28(η ⁣(2τ)η ⁣(τ))16)3j\!\left(\tau\right) = {\left({\left(\frac{\eta\!\left(\tau\right)}{\eta\!\left(2 \tau\right)}\right)}^{8} + {2}^{8} {\left(\frac{\eta\!\left(2 \tau\right)}{\eta\!\left(\tau\right)}\right)}^{16}\right)}^{3}

Analytic properties

27f9d2
HolomorphicDomain ⁣(j ⁣(τ),τ,H)=H\operatorname{HolomorphicDomain}\!\left(j\!\left(\tau\right), \tau, \mathbb{H}\right) = \mathbb{H}
ea3e3c
zerosτFj ⁣(τ)={e2πi/3}\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathcal{F}} j\!\left(\tau\right) = \left\{{e}^{2 \pi i / 3}\right\}
1b2d8a
zerosτHj ⁣(τ)={γe2πi/3:γPSL2(Z)}\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} j\!\left(\tau\right) = \left\{ \gamma \circ {e}^{2 \pi i / 3} : \gamma \in \operatorname{PSL}_2(\mathbb{Z}) \right\}
dcc8b1
{j ⁣(τ):τF}=C\left\{ j\!\left(\tau\right) : \tau \in \mathcal{F} \right\} = \mathbb{C}
441301
zerosτF(j ⁣(τ)z)=1\left|\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathcal{F}} \left(j\!\left(\tau\right) - z\right)\right| = 1

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-05-23 08:00:13.607731 UTC