Assumptions:
TeX:
\int_{z}^{\infty} {e}^{-a {x}^{2} + b} \, dx = \frac{{e}^{b}}{2} \sqrt{\frac{\pi}{a}} \operatorname{erfc}\!\left(\sqrt{a} z\right)
a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(a\right) \gt 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Exp | Exponential function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Sqrt | Principal square root | |
| ConstPi | The constant pi (3.14...) | |
| Erfc | Complementary error function | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("f8de2e"),
Formula(Equal(Integral(Exp(Add(Neg(Mul(a, Pow(x, 2))), b)), Tuple(x, z, Infinity)), Mul(Mul(Div(Exp(b), 2), Sqrt(Div(ConstPi, a))), Erfc(Mul(Sqrt(a), z))))),
Variables(a, b, z),
Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Greater(Re(a), 0))))