# Fungrim entry: d84519

$\sum_{n=0}^{\infty} P_{n}\!\left(x\right) {z}^{n} = \frac{1}{\sqrt{1 - 2 x z + {z}^{2}}}$
Assumptions:$x \in \left[-1, 1\right] \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt 1$
TeX:
\sum_{n=0}^{\infty} P_{n}\!\left(x\right) {z}^{n} = \frac{1}{\sqrt{1 - 2 x z + {z}^{2}}}

x \in \left[-1, 1\right] \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt 1
Definitions:
Fungrim symbol Notation Short description
LegendrePolynomial$P_{n}\!\left(z\right)$ Legendre polynomial
Pow${a}^{b}$ Power
Infinity$\infty$ Positive infinity
Sqrt$\sqrt{z}$ Principal square root
ClosedInterval$\left[a, b\right]$ Closed interval
CC$\mathbb{C}$ Complex numbers
Abs$\left|z\right|$ Absolute value
Source code for this entry:
Entry(ID("d84519"),
Formula(Equal(Sum(Mul(LegendrePolynomial(n, x), Pow(z, n)), Tuple(n, 0, Infinity)), Div(1, Sqrt(Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2)))))),
Variables(x, z),
Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC